Welcome!

Silverlight Authors: Yeshim Deniz, Greg O'Connor, Trevor Parsons, Sandi Mappic, Liz McMillan

Related Topics: .NET, Open Source, AJAX & REA, Silverlight, Open Web, CRM

.NET: Blog Feed Post

Performance Tuning Windows 2012: Network Subsystem | Part 1

NDIS, the protocol stack, and user mode applications

Offload Capabilities
Offloading tasks can reduce CPU usage on the server, which improves the overall system performance. The network stack in Windows 2012 (and prior versions of the OS) can offload one or more tasks to a network adapter permitted you have an adapter with offload capabilities. The table below lists the details about offload capabilities:

Receive-side scaling (RSS) is a network driver technology that enables the efficient distribution of network receive processing across multiple CPUs in multiprocessor systems.

Checksum calculation

The network stack can offload the calculation and validation of Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) checksums on send and receive code paths. It can also offload the calculation and validation of IPv4 and IPv6 checksums on send and receive code paths.

IP security authentication and encryption

The TCP/IP transport layer can offload the calculation and validation of encrypted checksums for authentication headers and Encapsulating Security Payloads (ESPs). The TCP/IP transport layer can also offload the encryption and decryption of ESPs.

Segmentation of large TCP packets

The TCP/IP transport layer supports Large Send Offload v2 (LSOv2). With LSOv2, the TCP/IP transport layer can offload the segmentation of large TCP packets to the hardware.

Receive Segment Coalescing (RSC)

RSC is the ability to group packets together to minimize the header processing that is necessary for the host to perform. A maximum of 64 KB of received payload can be coalesced into a single larger packet for processing.

Receive-Side Scaling (RSS)

Receive-Side Scaling (RSS)
Windows Server 2012 (as well as Windows Server 2008 R2, and Windows Server 2008) supports Receive Side Scaling (RSS). RSS directs network processing to up to one logical processor per core. For example, given a server with Intel Hyper-Threading and 4 cores (8 logical processors), RSS will use no more than 4 logical processors for network processing.
RSS distributes incoming network I/O packets among logical processors so that packets that belong to the same TCP connection are processed on the same logical processor. RSS also load balances UDP unicast and multicast traffic from Windows Server 2012, and it routes related flows (as determined by hashing the source and destination addresses) to the same logical processor, preserving the order of related arrivals. Windows Server 2012 provides the following methods to tune RSS behavior:

· Windows PowerShell: Get-NetAdapterRSS, Set-NetAdapterRSS, Enable-NetAdapterRss, Disable-NetAdapterRss. These cmdlets allow you to view and modify RSS parameters.

· RSS Profiles: Used to determine which logical processors are assigned to which network adapter. Possible profiles are:

o Closest. Logical processor numbers near the network adapter’s base RSS processor are preferred. Windows may rebalance logical processors dynamically based on load.

o ClosestStatic. Logical processor numbers near the network adapter’s base RSS processor are preferred. Windows will not rebalance logical processors dynamically based on load.

o NUMA. Logical processor numbers will tend to be selected on different NUMA nodes to distribute the load. Windows may rebalance logical processors dynamically based on load.

o NUMAStatic. This is the default profile. Logical processor numbers will tend to be selected on different NUMA nodes to distribute the load. Windows will not rebalance logical processors dynamically based on load.

o Conservative: RSS uses as few processors as possible to sustain the load. This option helps reduce the number of interrupts.

You can use the set-netadapterRSS cmdlet to choose how many logical processors can be used for RSS on a per-network adapter basis, the starting offset for the range of logical processors, and which node the network adapter allocates memory from:

· MaxProcessors: Sets the maximum number of RSS processors to be used, ensuring application traffic is bound to a maximum number of processors on an interface.

set-netadapterRSS –Name “Ethernet” –MaxProcessors <value>

· BaseProcessorGroup: Sets the base processor group of a NUMA node, affecting the processor array used by RSS.

set-netadapterRSS –Name “Ethernet” –BaseProcessorGroup <value>

· MaxProcessorGroup: Sets the Max processor group of a NUMA node, affecting the processor array used by RSS.

set-netadapterRSS –Name “Ethernet” –MaxProcessorGroup <value>

· BaseProcessorNumber: Sets the base processor number of a NUMA node, allowing partitioning processors across network adapters and specifying the first logical processor in the range of RSS processors that is assigned to each adapter.

set-netadapterRSS –Name “Ethernet” –BaseProcessorNumber <Byte Value>

· NumaNode: The NUMA node that each network adapter can allocate memory from.

set-netadapterRSS –Name “Ethernet” –NumaNodeID <value>

· NumberofReceiveQueues: If your logical processors seem to be underutilized for receive traffic, you can try increasing the number of RSS queues from the default of 2 to the maximum number supported.

set-netadapterRSS –Name “Ethernet” –NumberOfReceiveQueues <value>

RSS does not provide any interaction with virtual machines, instead you can configure VMQ. RSS can be enabled for virtual machines in the case of SR-IOV because the virtual function driver supports RSS capability. In this case, the guest and the host will have the benefit of RSS. The host however, does not get RSS capability because the virtual switch is enabled with SR-IOV.

Receive-Segment Coalescing (RSC)
Receive Segment Coalescing can improve performance by reducing the number of IP headers that are processed for a given amount of received data.  You should use RSC to tune performance of received data by grouping (or coalescing) smaller packets into larger units. This can reduce latency and increase throughput for received heavy workloads. On network adapters supporting RSC, make sure that it is enabled, unless you have low latency, low throughput networking needs that benefit from RSC being turned off.

In Windows Server 2012 you can use the following PowerShell cmdlets to configure RSC capable adapters: Enable-NetAdapterRsc, Disable-NetRsc, Get-NetAdapterAdvancedProperty, and Set-NetAdapterAdvancedProperty. RSC can be examined using the cmdlets Get-NetAdapterRSC and Get-NetAdapterStatistics. The Get cmdlet shows if RSC is enabled and if TCP enables RSC to be in operational state. In the example above, IPv4 RSC is enabled. To understand failures, you can view the coalesced bytes or exceptions caused by entering the following command:

PS C:\Users\Administrator> $x = Get-NetAdapterStatistics “myAdapter”

PS C:\Users\Administrator> $x.rscstatistics

CoalescedBytes : 0

CoalescedPackets : 0

CoalescingEvents : 0

CoalescingExceptions : 0

RSC and virtualization
If the host adapter is not bound to the virtual switch, RSC is supported on the physical host. If the adapter is bound to the virtual switch, Windows 2012 will disable RSC on the physical host.
RSC can be enabled for a virtual machine when SR-IOV is enabled. In this case, virtual functions will support RSC capability; hence, virtual machines will also get the benefit of RSC.

Network Adapter Resources

A few network adapters actively manage their resources to achieve optimum performance. Several network adapters let the administrator manually configure resources by using the Advanced Networking tab for the adapter. For such adapters, you can set the values of a number of parameters including the number of receive buffers and send buffers.  In Windows Server 2012, you can configure advanced network settings using the following PowerShell cmdlets:

  • Get-NetAdapterAdvancedProperty
  • SetNetAdapterAdvancedProperty
  • Enable-NetAdapter
  • Enable-NetAdapterBinding
  • Enable-NetAdapterChecksumOffload
  • Enable-NetAdapterLso
  • Enable-NetAdapterIPSecOffload
  • Enable-NetAdapterPowerManagemetn
  • Enable-NetAdapterQos
  • Enable-NetAdapterRDMA
  • Enable-NetAdapter
  • Enable-NetAdapterSriov

Message-Signaled Interrupts (MSI/MSI-X)
Network adapters that support MSI/MSI-X can target specific logical processors. If your network adapter also support RSS, then a logical processor can be dedicated to servicing interrupts and deferred procedure calls (DPCs) for a given TCP connection. This will greatly improve performance, by preserving the TCP cache.

Interrupt Moderation
Lastly, we’ll discuss interrupt moderation. Some network adapters expose different interrupt moderation levels, or buffer coalescing parameters, or both. You definitely should consider buffer coalescing when the network adapter does not perform interrupt moderation. Interrupt moderation will reduce CPU utilization because it minimizes the per-buffer processing cost, but you should consider that interrupt-moderation  and buffer coalescing can have a negative impact on latency-sensitive situations. The table below lists the suggested adapter features for various server roles.

Role

Checksum offload

Large Send Offload (LSO)

Receive-side scaling (RSS)

Receive Segment Coalescing (RSC)

File server

X

X

X

X

Web server

X

X

X

Mail server (short-lived connections)

X

X

Database server

X

X

X

FTP server

X

X

X

Media server

X

X

X

These settings serve as guidelines only . Depending on the workload, your network adapter(s), and your specific situation, your experience can be different. In our next article we’ll go deeper into tuning the network adapter and utilizing some of the features we discussed.

Read the original blog entry...

More Stories By Hovhannes Avoyan

Hovhannes Avoyan is the CEO of Monitis, Inc., a provider of on-demand systems management and monitoring software to 50,000 users spanning small businesses and Fortune 500 companies.

Prior to Monitis, he served as General Manager and Director of Development at prominent web portal Lycos Europe, where he grew the Lycos Armenia group from 30 people to over 200, making it the company's largest development center. Prior to Lycos, Avoyan was VP of Technology at Brience, Inc. (based in San Francisco and acquired by Syniverse), which delivered mobile internet content solutions to companies like Cisco, Ingram Micro, Washington Mutual, Wyndham Hotels , T-Mobile , and CNN. Prior to that, he served as the founder and CEO of CEDIT ltd., which was acquired by Brience. A 24 year veteran of the software industry, he also runs Sourcio cjsc, an IT consulting company and startup incubator specializing in web 2.0 products and open-source technologies.

Hovhannes is a senior lecturer at the American Univeristy of Armenia and has been a visiting lecturer at San Francisco State University. He is a graduate of Bertelsmann University.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.