Silverlight Authors: Steven Mandel, Gerardo A Dada, Srinivasan Sundara Rajan, Yeshim Deniz, Greg O'Connor

Blog Feed Post

MaaS applied to Healthcare – Use Case Practice

MaaS (Model as a Service) might allow building and controlling shared healthcare Cloud-ready data, affording agile data design, economies of scale and maintaining a trusted environment and scaling security. With MaaS, models map infrastructure and allow controlling persistent storage and deployment audit in order to certify th at data are coherent and remain linked to specific storage. As a consequence, models allow to check where data is deployed and stored. MaaS can play a crucial role in supplying services in healthcare: the model containing infrastructure properties includes information to classify the on-premise data Cloud service in terms of data security, coherence, outage, availability, geo-location and to secure an assisted service deployment and virtualization.

Municipalities are opening new exchange information with healthcare institutes. The objective is sharing medical research, hospital acceptance by pathology, assistance and hospitalization with doctors, hospitals, clinics and, of course, patients. This open data [6] should improve patient care, prevention, prophylaxis and appropriate medical booking and scheduling by making information sharing more timely and efficient. From the data management point of view it means the service should assure data elasticity, multi-tenancy, scalability, security together with physical and logical architectures that represent the guidelines to design healthcare services.

Accordingly, healthcare services in the Cloud must primarily secure the following data properties [2]:
-      data location;
-      data persistence;
-      data discovery and navigation;
-      data inference;
-      confidentiality;
-      availability;
-      on-demand data secure deleting/shredding [4] [5] [11] [12].

These properties should be defined during the service design and data models play the “on-premise” integral role in defining, managing and protecting healthcare data in the Cloud. When creating healthcare data models, the service is created as well and properties for confidentiality, availability, authenticity, authorization, authentication and integrity [12] have to be defined inside: here is how MaaS provides preconfigured service properties.

Applying MaaS to Healthcare – Getting Practice
Applying MaaS to design and deploy healthcare services means explaining how apply the DaaS (Database as a Service, see [2] and [4]) lifecycle to realize faster and positive impacts on the go-live preparation with Cloud services. The Use Case introduces the practices how could be defined the healthcare service and then to translate them into the appropriate guidelines. Therefore, the DaaS lifecycle service practices we are applying are [4]:

Take into account, healthcare is a dynamic complex environment with many actors: patients, physicians, IT professionals, chemists, lab technicians, researchers, health operators…. The Use Case we are introducing tries to consider the whole system. It provides the main tasks along the DaaS lifecycle and so how the medical information might be managed and securely exchanged [12] among stakeholders for multiple entities such as hospital, clinics, pharmacy, labs and insurance companies.

The Use Case
Here is how MaaS might cover the Use Case and DaaS lifecycle best practices integrate the above properties and directions:

Objective To facilitate services to healthcare users and to improve exchange information experience among stakeholders. The Use Case aims to reduce costs of services by rapid data designing, updating, deployment and to provide data audit and control. To improve user experience with healthcare knowledge.
Description Current costs of data design, update and deployment are expensive and healthcare information (clinical, pharmaceutical, prevention, prophylaxis…) is not delivered fast enough based upon user experience;
Costs for hospitalization and treatments information should be predictable based upon user experience and interaction.
Actors Clinical and Research Centres;
Healthcare Institute/Public Body  (Access Administrators);
Healthcare Institute/Public Body (Credentials, Roles Providers);
IT Operations (Cloud Providers, Storage Providers, Clinical Application Providers).
Requirements Reducing costs and rapidly delivering relevant data to users, stakeholders and healthcare institutes;
Enabling decision making information to actors who regularly need access [11] [12] to healthcare services but lack the scale to exchange (and require) more dedicated services and support;
Fast supporting and updating healthcare data to users due to large reference base with many locations and disparate applications;
Ensuring compliance and governance directions are currently applied, revised and supervised;
Data security, confidentiality, availability, authenticity, authorization, authentication and integrity to be defined “on-premise”.
Pre-processing and post-processing Implementing and sharing data models;
Designing data model properties according to private, public and/or hybrid Cloud requirements;
Designing “on-premise” of the data storage model;
Modeling data to calculate “a priori” physical resources allocation;
Modeling data to predict usage “early” and to optimize database handling;
Outage is covered by versions and changes archived based on model partitioning;
Content discovery assists in identifying and auditing data to restore the service to previous versions and to irrecoverably destroying the data, if necessary, is asked by the regulations.
Included and extended use case Deployment is guided from model properties and architecture definition;
Mapping of data is defined and updated, checking whether the infrastructure provider has persistence and finding out whether outages are related to on-line tasks;
Deploying and sharing are guided from model properties and architecture definition.

Following, we apply MaaS’ properties (a subset) to the above healthcare Use Case. Per contra, Data Model properties (a subset) are applied along the DaaS lifecycle states:

MaaS Properties

DaaS Lifecycle States

Healthcare Data Model Properties
Data Location Create Data Model
Model Archive and Change
Deploy and Share
Data models contain partitioning properties and can include data location constraints. User tagging of data (a common Web 2.0 practice, through the use of clinic user-defined properties) should be managed. Support to compliant storage for preventative care data records should be provided
Data persistence Create Data Model
Model Archive & Change
Secure delete
For any partition, sub-model, or version of models, data model has to label and trace data location. Model defines a map specifying where data is stored (ambulatory care, clinical files have different storages). Providers persistence can be registered. Data discovery can update partition properties to identify where data is located
Data inference Create Data Model Data model has to support inference and special data aggregation: ambulatory might inference patient’s insurance file. All inferences and aggregations are defined, updated and tested into the model
Confidentiality Create Data Model
Populate, Use and Test
Data model guides rights assignment, access controls, rights management, and application data security starting from data model. As different tenants (hospitals, clinics, insurance companies and pharmacies) access the data, users and tenants should be defined inside the model. Logical and physical controls have to be set
High availability Deploy and Share
Model Archive and Change
Data model and partitioning configuration together with model changes and versions permits mastering of a recovery scheme and restoration when needed. Data inventory (classified by Surgery, Radiology, Cardiology, for example) vs discovery have to be traced and set.
Fast updates at low cost Create Data Model
Generate Schema/Update Data Model
Data reverse and forward engineering permits change management and version optimization in real-time directly on data deployed properties
Multi-database partitioning Create Data Model
Deploy and Share
Bi-directional partitioning in terms of deployment, storage, and evolution through model versioning has to be set. Multi-DBMS version management helps in sharing multi-partitioning deployments: for example, Insurance and Surgery by Patient, normally are partitioned and belong to different tenants vs different databases
Near-zero configuration and administration Create Data Model
Generate Schema/Update Data Model
Data models cover and contain all data properties including scripts, stored procedures, queries, partitions, changes and all configuration and administration properties. This means administrative actions decrease to leave more time for data design and update (and deployment). Regulation compliance can be a frequent administration task: models ensure that healthcare compliance and governance is currently aligned

The Outcome
MaaS defines service properties through which the DaaS process can be implemented and maintained. As a consequence, applying the Use Case through the introduced directions, the following results should be outlined.

Qualitative Outcomes:
1)    Healthcare actors share information on the basis of defined “on-premise” data models: models can be implemented and deployed using a model-driven paradigm;
2)    Data Models are standardized in terms of naming convention and conceptual templates (Pharma, Insurance, Municipality… and so on): in fact, models can be modified and updated with respect the knowledge they were initially designed;
3)    Storage and partitioning in the Cloud can be defined “a priori” and periodic audits can be set to certify that data are coherent and remain linked to specific sites;
4)    The users consult the information and perform 2 tasks:
4.1) try the (best) search and navigate the knowledge for personal and work activities;
4.2) give back information about user experience and practice/procedures that should be updated, rearranged, downsized or extended depending upon community needs, types of interaction, events or public specific situations.
5)    Models are “on-premise” policy-driven tools. Regulation compliance rules can be included in the data model. Changes on current compliance constraints means changes on the data model before it is deployed with the new version.

Quantitative Outcomes:
1)    Measurable and traceable costs reduction (to be calculated as a function of annual Cloud Fee, Resources tuning and TCO);
2)    Time reduction in terms of knowledge fast design, update, deployment, portability, reuse (to be calculated as a function of SLA, data and application management effort and ROI);
3)    Risk reduction accordingly to “on-premise” Cloud service design and control (to be calculated as a function of recovery time, chargeback on cost of applied countermeasures compared with periodical audit based upon model information).

MaaS might provide the real opportunity to offer a unique utility-style model life cycle to accelerate cloud data optimization and performance in the healthcare network. MaaS applied to healthcare services might be the right way to transform the medical service delivery in the Cloud. MaaS defines “on-premise” data security, coherence, outage, availability, geo-location and an assisted service deployment. Models are adaptable to various departmental needs and organizational sizes, simplify and align healthcare domain-specific knowledge combining the data model approach and the on-demand nature of cloud computing. MaaS agility is the key requirements of data services design, incremental data deployment and progressive data structure provisioning. Finally, the model approach allows the validation of service evolution. The models’ versions and configurations are a catalogue to manage both data regulation compliance [12] and data contract’s clauses in the Cloud among IT, Providers and Healthcare actors [9].

[1] N. Piscopo - ERwin® in the Cloud: How Data Modeling Supports Database as a Service (DaaS) Implementations
[2] N. Piscopo - CA ERwin® Data Modeler’s Role in the Relational Cloud
[3] D. Burbank, S. Hoberman - Data Modeling Made Simple with CA ERwin® Data Modeler r8
[4] N. Piscopo – Best Practices for Moving to the Cloud using Data Models in the DaaS Life Cycle
[5] N. Piscopo – Using CA ERwin® Data Modeler and Microsoft SQL Azure to Move Data to the Cloud within the DaaS Life Cycle
[6] N. Piscopo – MaaS (Model as a Service) is the emerging solution to design, map, integrate and publish Open Data http://cloudbestpractices.net/2012/10/21/maas/
[7] N. Piscopo - MaaS Workshop, Awareness, Courses Syllabus
[8] N. Piscopo - DaaS Workshop, Awareness, Courses Syllabus
[9] N. Piscopo – Applying MaaS to DaaS (Database as a Service ) Contracts. An intorduction to the Practice http://cloudbestpractices.net/2012/11/04/applying-maas-to-daas/
[10] N. M. Josuttis – SOA in Practice
[11] H. A. J. Narayanan, M. H. GüneşEnsuring Access Control in Cloud Provisioned Healthcare Systems
[12] Kantara Initiatives -http://kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases

This document is provided AS-IS for your informational purposes only. In no event the contains of “How MaaS might be applied to Healthcare – A Use Case” will be liable to any party for direct, indirect, special, incidental, economical (including lost business profits, business interruption, loss or damage of data, and the like) or consequential damages, without limitations, arising out of the use or inability to use this documentation or the products, regardless of the form of action, whether in contract, tort (including negligence), breach of warranty, or otherwise, even if an advise of the possibility of such damages there exists. Specifically, it is disclaimed any warranties, including, but not limited to, the express or implied warranties of merchantability, fitness for a particular purpose and non-infringement, regarding this document or the products’ use or performance. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies/offices.

Read the original blog entry...

More Stories By Cloud Best Practices Network

The Cloud Best Practices Network is an expert community of leading Cloud pioneers. Follow our best practice blogs at http://CloudBestPractices.net

@ThingsExpo Stories
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, will discuss how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team a...
A completely new computing platform is on the horizon. They’re called Microservers by some, ARM Servers by others, and sometimes even ARM-based Servers. No matter what you call them, Microservers will have a huge impact on the data center and on server computing in general. Although few people are familiar with Microservers today, their impact will be felt very soon. This is a new category of computing platform that is available today and is predicted to have triple-digit growth rates for some ...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
The Internet of Things (IoT), in all its myriad manifestations, has great potential. Much of that potential comes from the evolving data management and analytic (DMA) technologies and processes that allow us to gain insight from all of the IoT data that can be generated and gathered. This potential may never be met as those data sets are tied to specific industry verticals and single markets, with no clear way to use IoT data and sensor analytics to fulfill the hype being given the IoT today.
SYS-CON Events announced today that Numerex Corp, a leading provider of managed enterprise solutions enabling the Internet of Things (IoT), will exhibit at the 19th International Cloud Expo | @ThingsExpo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Numerex Corp. (NASDAQ:NMRX) is a leading provider of managed enterprise solutions enabling the Internet of Things (IoT). The Company's solutions produce new revenue streams or create operating...
SYS-CON Events announced today that MathFreeOn will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MathFreeOn is Software as a Service (SaaS) used in Engineering and Math education. Write scripts and solve math problems online. MathFreeOn provides online courses for beginners or amateurs who have difficulties in writing scripts. In accordance with various mathematical topics, there are more tha...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this ...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm ...
Although it has gained significant traction in the consumer space, IoT is still in the early stages of adoption in enterprises environments. However, many companies are working on initiatives like Industry 4.0 that includes IoT as one of the key disruptive technologies expected to reshape businesses of tomorrow. The key challenges will be availability, robustness and reliability of networks that connect devices in a business environment. Software Defined Wide Area Network (SD-WAN) is expected to...
OnProcess Technology has announced it will be a featured speaker at @ThingsExpo, taking place November 1 - 3, 2016, in Santa Clara, California. Dan Gettens, OnProcess’ Chief Analytics Officer, will discuss how Internet of Things (IoT) data can be leveraged to predict product failures, improve uptime and slash costly inventory stock. @ThingsExpo is an annual gathering of IoT and cloud developers, practitioners and thought-leaders who exchange ideas and insights on topics ranging from Big Data in...
SYS-CON Events announced today that CDS Global Cloud, an Infrastructure as a Service provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. CDS Global Cloud is an IaaS (Infrastructure as a Service) provider specializing in solutions for e-commerce, internet gaming, online education and other internet applications. With a growing number of data centers and network points around the world, ...
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of (at least) three separate application components: the software embedded in the device, the back-end service, and the mobile application for the end user’s controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target –...
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service. 

Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
Big Data has been changing the world. IoT fuels the further transformation recently. How are Big Data and IoT related? In his session at @BigDataExpo, Tony Shan, a renowned visionary and thought leader, will explore the interplay of Big Data and IoT. He will anatomize Big Data and IoT separately in terms of what, which, why, where, when, who, how and how much. He will then analyze the relationship between IoT and Big Data, specifically the drilldown of how the 4Vs of Big Data (Volume, Variety,...
From wearable activity trackers to fantasy e-sports, data and technology are transforming the way athletes train for the game and fans engage with their teams. In his session at @ThingsExpo, will present key data findings from leading sports organizations San Francisco 49ers, Orlando Magic NBA team. By utilizing data analytics these sports orgs have recognized new revenue streams, doubled its fan base and streamlined costs at its stadiums. John Paul is the CEO and Founder of VenueNext. Prior ...
Ask someone to architect an Internet of Things (IoT) solution and you are guaranteed to see a reference to the cloud. This would lead you to believe that IoT requires the cloud to exist. However, there are many IoT use cases where the cloud is not feasible or desirable. In his session at @ThingsExpo, Dave McCarthy, Director of Products at Bsquare Corporation, will discuss the strategies that exist to extend intelligence directly to IoT devices and sensors, freeing them from the constraints of ...
SYS-CON Events announced today that Embotics, the cloud automation company, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Embotics is the cloud automation company for IT organizations and service providers that need to improve provisioning or enable self-service capabilities. With a relentless focus on delivering a premier user experience and unmatched customer support, Embotics is the fas...
The Open Connectivity Foundation (OCF), sponsor of the IoTivity open source project, and AllSeen Alliance, which provides the AllJoyn® open source IoT framework, today announced that the two organizations’ boards have approved a merger under the OCF name and bylaws. This merger will advance interoperability between connected devices from both groups, enabling the full operating potential of IoT and representing a significant step towards a connected ecosystem.