Click here to close now.



Welcome!

Silverlight Authors: Gerardo A Dada, Srinivasan Sundara Rajan, Yeshim Deniz, Greg O'Connor, Trevor Parsons

Blog Feed Post

MaaS applied to Healthcare – Use Case Practice

MaaS (Model as a Service) might allow building and controlling shared healthcare Cloud-ready data, affording agile data design, economies of scale and maintaining a trusted environment and scaling security. With MaaS, models map infrastructure and allow controlling persistent storage and deployment audit in order to certify th at data are coherent and remain linked to specific storage. As a consequence, models allow to check where data is deployed and stored. MaaS can play a crucial role in supplying services in healthcare: the model containing infrastructure properties includes information to classify the on-premise data Cloud service in terms of data security, coherence, outage, availability, geo-location and to secure an assisted service deployment and virtualization.

Introduction
Municipalities are opening new exchange information with healthcare institutes. The objective is sharing medical research, hospital acceptance by pathology, assistance and hospitalization with doctors, hospitals, clinics and, of course, patients. This open data [6] should improve patient care, prevention, prophylaxis and appropriate medical booking and scheduling by making information sharing more timely and efficient. From the data management point of view it means the service should assure data elasticity, multi-tenancy, scalability, security together with physical and logical architectures that represent the guidelines to design healthcare services.

Accordingly, healthcare services in the Cloud must primarily secure the following data properties [2]:
-      data location;
-      data persistence;
-      data discovery and navigation;
-      data inference;
-      confidentiality;
-      availability;
-      on-demand data secure deleting/shredding [4] [5] [11] [12].

These properties should be defined during the service design and data models play the “on-premise” integral role in defining, managing and protecting healthcare data in the Cloud. When creating healthcare data models, the service is created as well and properties for confidentiality, availability, authenticity, authorization, authentication and integrity [12] have to be defined inside: here is how MaaS provides preconfigured service properties.

Applying MaaS to Healthcare – Getting Practice
Applying MaaS to design and deploy healthcare services means explaining how apply the DaaS (Database as a Service, see [2] and [4]) lifecycle to realize faster and positive impacts on the go-live preparation with Cloud services. The Use Case introduces the practices how could be defined the healthcare service and then to translate them into the appropriate guidelines. Therefore, the DaaS lifecycle service practices we are applying are [4]:

Take into account, healthcare is a dynamic complex environment with many actors: patients, physicians, IT professionals, chemists, lab technicians, researchers, health operators…. The Use Case we are introducing tries to consider the whole system. It provides the main tasks along the DaaS lifecycle and so how the medical information might be managed and securely exchanged [12] among stakeholders for multiple entities such as hospital, clinics, pharmacy, labs and insurance companies.

The Use Case
Here is how MaaS might cover the Use Case and DaaS lifecycle best practices integrate the above properties and directions:

Objective To facilitate services to healthcare users and to improve exchange information experience among stakeholders. The Use Case aims to reduce costs of services by rapid data designing, updating, deployment and to provide data audit and control. To improve user experience with healthcare knowledge.
Description Current costs of data design, update and deployment are expensive and healthcare information (clinical, pharmaceutical, prevention, prophylaxis…) is not delivered fast enough based upon user experience;
Costs for hospitalization and treatments information should be predictable based upon user experience and interaction.
Actors Clinical and Research Centres;
Laboratories;
Healthcare Institute/Public Body  (Access Administrators);
Healthcare Institute/Public Body (Credentials, Roles Providers);
Patients;
IT Operations (Cloud Providers, Storage Providers, Clinical Application Providers).
Requirements Reducing costs and rapidly delivering relevant data to users, stakeholders and healthcare institutes;
Enabling decision making information to actors who regularly need access [11] [12] to healthcare services but lack the scale to exchange (and require) more dedicated services and support;
Fast supporting and updating healthcare data to users due to large reference base with many locations and disparate applications;
Ensuring compliance and governance directions are currently applied, revised and supervised;
Data security, confidentiality, availability, authenticity, authorization, authentication and integrity to be defined “on-premise”.
Pre-processing and post-processing Implementing and sharing data models;
Designing data model properties according to private, public and/or hybrid Cloud requirements;
Designing “on-premise” of the data storage model;
Modeling data to calculate “a priori” physical resources allocation;
Modeling data to predict usage “early” and to optimize database handling;
Outage is covered by versions and changes archived based on model partitioning;
Content discovery assists in identifying and auditing data to restore the service to previous versions and to irrecoverably destroying the data, if necessary, is asked by the regulations.
Included and extended use case Deployment is guided from model properties and architecture definition;
Mapping of data is defined and updated, checking whether the infrastructure provider has persistence and finding out whether outages are related to on-line tasks;
Deploying and sharing are guided from model properties and architecture definition.


Following, we apply MaaS’ properties (a subset) to the above healthcare Use Case. Per contra, Data Model properties (a subset) are applied along the DaaS lifecycle states:


MaaS Properties

DaaS Lifecycle States

Healthcare Data Model Properties
Data Location Create Data Model
Model Archive and Change
Deploy and Share
Data models contain partitioning properties and can include data location constraints. User tagging of data (a common Web 2.0 practice, through the use of clinic user-defined properties) should be managed. Support to compliant storage for preventative care data records should be provided
Data persistence Create Data Model
Model Archive & Change
Secure delete
For any partition, sub-model, or version of models, data model has to label and trace data location. Model defines a map specifying where data is stored (ambulatory care, clinical files have different storages). Providers persistence can be registered. Data discovery can update partition properties to identify where data is located
Data inference Create Data Model Data model has to support inference and special data aggregation: ambulatory might inference patient’s insurance file. All inferences and aggregations are defined, updated and tested into the model
Confidentiality Create Data Model
Populate, Use and Test
Data model guides rights assignment, access controls, rights management, and application data security starting from data model. As different tenants (hospitals, clinics, insurance companies and pharmacies) access the data, users and tenants should be defined inside the model. Logical and physical controls have to be set
High availability Deploy and Share
Model Archive and Change
Data model and partitioning configuration together with model changes and versions permits mastering of a recovery scheme and restoration when needed. Data inventory (classified by Surgery, Radiology, Cardiology, for example) vs discovery have to be traced and set.
Fast updates at low cost Create Data Model
Generate Schema/Update Data Model
Data reverse and forward engineering permits change management and version optimization in real-time directly on data deployed properties
Multi-database partitioning Create Data Model
Deploy and Share
Bi-directional partitioning in terms of deployment, storage, and evolution through model versioning has to be set. Multi-DBMS version management helps in sharing multi-partitioning deployments: for example, Insurance and Surgery by Patient, normally are partitioned and belong to different tenants vs different databases
Near-zero configuration and administration Create Data Model
Generate Schema/Update Data Model
Data models cover and contain all data properties including scripts, stored procedures, queries, partitions, changes and all configuration and administration properties. This means administrative actions decrease to leave more time for data design and update (and deployment). Regulation compliance can be a frequent administration task: models ensure that healthcare compliance and governance is currently aligned



The Outcome
MaaS defines service properties through which the DaaS process can be implemented and maintained. As a consequence, applying the Use Case through the introduced directions, the following results should be outlined.

Qualitative Outcomes:
1)    Healthcare actors share information on the basis of defined “on-premise” data models: models can be implemented and deployed using a model-driven paradigm;
2)    Data Models are standardized in terms of naming convention and conceptual templates (Pharma, Insurance, Municipality… and so on): in fact, models can be modified and updated with respect the knowledge they were initially designed;
3)    Storage and partitioning in the Cloud can be defined “a priori” and periodic audits can be set to certify that data are coherent and remain linked to specific sites;
4)    The users consult the information and perform 2 tasks:
4.1) try the (best) search and navigate the knowledge for personal and work activities;
4.2) give back information about user experience and practice/procedures that should be updated, rearranged, downsized or extended depending upon community needs, types of interaction, events or public specific situations.
5)    Models are “on-premise” policy-driven tools. Regulation compliance rules can be included in the data model. Changes on current compliance constraints means changes on the data model before it is deployed with the new version.

Quantitative Outcomes:
1)    Measurable and traceable costs reduction (to be calculated as a function of annual Cloud Fee, Resources tuning and TCO);
2)    Time reduction in terms of knowledge fast design, update, deployment, portability, reuse (to be calculated as a function of SLA, data and application management effort and ROI);
3)    Risk reduction accordingly to “on-premise” Cloud service design and control (to be calculated as a function of recovery time, chargeback on cost of applied countermeasures compared with periodical audit based upon model information).

Conclusion
MaaS might provide the real opportunity to offer a unique utility-style model life cycle to accelerate cloud data optimization and performance in the healthcare network. MaaS applied to healthcare services might be the right way to transform the medical service delivery in the Cloud. MaaS defines “on-premise” data security, coherence, outage, availability, geo-location and an assisted service deployment. Models are adaptable to various departmental needs and organizational sizes, simplify and align healthcare domain-specific knowledge combining the data model approach and the on-demand nature of cloud computing. MaaS agility is the key requirements of data services design, incremental data deployment and progressive data structure provisioning. Finally, the model approach allows the validation of service evolution. The models’ versions and configurations are a catalogue to manage both data regulation compliance [12] and data contract’s clauses in the Cloud among IT, Providers and Healthcare actors [9].

References
[1] N. Piscopo - ERwin® in the Cloud: How Data Modeling Supports Database as a Service (DaaS) Implementations
[2] N. Piscopo - CA ERwin® Data Modeler’s Role in the Relational Cloud
[3] D. Burbank, S. Hoberman - Data Modeling Made Simple with CA ERwin® Data Modeler r8
[4] N. Piscopo – Best Practices for Moving to the Cloud using Data Models in the DaaS Life Cycle
[5] N. Piscopo – Using CA ERwin® Data Modeler and Microsoft SQL Azure to Move Data to the Cloud within the DaaS Life Cycle
[6] N. Piscopo – MaaS (Model as a Service) is the emerging solution to design, map, integrate and publish Open Data http://cloudbestpractices.net/2012/10/21/maas/
[7] N. Piscopo - MaaS Workshop, Awareness, Courses Syllabus
[8] N. Piscopo - DaaS Workshop, Awareness, Courses Syllabus
[9] N. Piscopo – Applying MaaS to DaaS (Database as a Service ) Contracts. An intorduction to the Practice http://cloudbestpractices.net/2012/11/04/applying-maas-to-daas/
[10] N. M. Josuttis – SOA in Practice
[11] H. A. J. Narayanan, M. H. GüneşEnsuring Access Control in Cloud Provisioned Healthcare Systems
[12] Kantara Initiatives -http://kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases

Disclamer
This document is provided AS-IS for your informational purposes only. In no event the contains of “How MaaS might be applied to Healthcare – A Use Case” will be liable to any party for direct, indirect, special, incidental, economical (including lost business profits, business interruption, loss or damage of data, and the like) or consequential damages, without limitations, arising out of the use or inability to use this documentation or the products, regardless of the form of action, whether in contract, tort (including negligence), breach of warranty, or otherwise, even if an advise of the possibility of such damages there exists. Specifically, it is disclaimed any warranties, including, but not limited to, the express or implied warranties of merchantability, fitness for a particular purpose and non-infringement, regarding this document or the products’ use or performance. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies/offices.


Read the original blog entry...

More Stories By Cloud Best Practices Network

The Cloud Best Practices Network is an expert community of leading Cloud pioneers. Follow our best practice blogs at http://CloudBestPractices.net

@ThingsExpo Stories
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...